Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture.

نویسندگان

  • Vasav Sahni
  • Jared Harris
  • Todd A Blackledge
  • Ali Dhinojwala
چکیده

Spiders' cobwebs ensnare both walking and flying prey. While the scaffolding silk can entangle flying insects, gumfoot silk threads pull walking prey off the ground and into the web. Therefore, scaffolding silk needs to withstand the impact of the prey, whereas gumfoot silk needs to easily detach from the substrate when contacted by prey. Here we show that spiders accomplish these divergent demands by creating attachment discs of two distinct architectures using the same pyriform silk. A 'staple-pin' architecture firmly attaches the scaffolding silk to the substrate and a previously unknown 'dendritic' architecture weakly attaches the gumfoot silk to the substrate. Gumfoot discs adhere weakly, triggering a spring-loaded trap, while the strong adhesion of scaffolding discs compels the scaffolding threads to break instead of detaching. We describe the differences in adhesion for these two architectures using tape-peeling models and design synthetic attachments that reveal important design principles for controlled adhesion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstract Submitted for the MAR13 Meeting of The American Physical Society Cob-Weaving Spiders Design Attachment Discs Differently for Locomotion and Prey Capture1

Submitted for the MAR13 Meeting of The American Physical Society Cob-Weaving Spiders Design Attachment Discs Differently for Locomotion and Prey Capture1 VASAV SAHNI, JARED HARRIS, TODD BLACKLEDGE, ALI DHINOJWALA, The University of Akron — Spiders’ cobwebs ensnare both walking and flying prey. While the scaffolding silk can entangle flying insects, gumfoot silk threads pull walking prey off the...

متن کامل

The common house spider alters the material and mechanical properties of cobweb silk in response to different prey.

Many spiders depend upon webs to capture prey. Web function results from architecture and mechanical performance of the silk. We hypothesized that the common house spider, Achaearanea tepidariorum, would alter the mechanical performance of its cobweb in response to different prey by varying the structural and material properties of its silk. We fed spiders either large, high kinetic energy cric...

متن کامل

Changes in the Adhesive Properties of Spider Aggregate Glue During the Evolution of Cobwebs

We compare the prey capture glues produced by orb-weaving spiders (viscid glue) and their evolutionary descendents, the cobweb-weaving spiders (gumfoot glue). These glues are produced in homologous glands but exhibit contrasting structure, properties and response to changing humidity. Individual glue droplet stretching measurements indicate that the gumfoot glue behaves like a viscoelastic liqu...

متن کامل

Web orientation and prey resources for web-building spiders in eastern hemlock.

We examined the arthropod community on eastern hemlock, Tsuga canadensis (L.) Carr, in the context of its role in providing potential prey items for hemlock-associated web-weaving spiders. Using sticky traps simulating spider webs, we evaluated what prey items are available to web-weaving spiders in eastern hemlock based on web orientation (horizontal versus vertical) and cardinal direction. W...

متن کامل

Reconstructing web evolution and spider diversification in the molecular era.

The evolutionary diversification of spiders is attributed to spectacular innovations in silk. Spiders are unique in synthesizing many different kinds of silk, and using silk for a variety of ecological functions throughout their lives, particularly to make prey-catching webs. Here, we construct a broad higher-level phylogeny of spiders combining molecular data with traditional morphological and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012